为什么sin(x+y) - sinx = 2cos(x+y/2)siny/2

问题描述:

为什么sin(x+y) - sinx = 2cos(x+y/2)siny/2

sin(x+y)-sinx=2sin[(x+y)-x]/2*cos[(x+y)+x]/2=2sin(y/2)cos[(2x+y)/2]

根据积化和差公式:
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
解得:
2cos(x+y/2)siny/2=sin(x+y)-sin(x)

x+y=x+y/2+y/2x=x+y/2-y/2sin(x+y)=sin(x+y/2+y/2)=sin(x+y/2)cosy/2+cos(x+y/2)siny/2sinx=sin(x+y/2)cosy/2-cos(x+y/2)siny/2所以sin(x+y) - sinx =sin(x+y/2)cosy/2+cos(x+y/2)siny/2-[sin(x+y/2)cosy/2-cos(x+y...