已知Sn为数列{an}的前n项和,Sn=1/2n2+11/2n;数列{bn}满足:b3=11,bn+2=2bn+1-bn,其前9项和为153. (Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)设Tn为数列{cn}的前n项和,cn=6/(2
问题描述:
已知Sn为数列{an}的前n项和,Sn=
n2+1 2
n;数列{bn}满足:b3=11,bn+2=2bn+1-bn,其前9项和为153.11 2
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Tn为数列{cn}的前n项和,cn=
,求Tn. 6 (2an−11)(2bn−1)
答
(I)∵数列{an}的前n项和,Sn=
n2+1 2
n.11 2
∴当n=1时,a1=S1=
+1 2
=6;11 2
当n≥2时,an=Sn-Sn-1=
n2+1 2
n-[11 2
(n−1)2+1 2
(n−1)]=n+5.11 2
当n=1时,上式成立,
∴an=n+5.
∵b3=11,bn+2=2bn+1-bn,
∴数列{bn}是等差数列,设公差为d.
∵前9项和为153,
∴153=9b1+
d,b3=b1+2d=11.解得b1=5,d=3.9×8 2
∴bn=5+3(n-1)=3n+2.
(II)cn=
=6 (2an−11)(2bn−1)
=6 (2n+10−11)(6n+4−1)
−1 2n−1
,1 2n+1
∴Tn=(1−
)+(1 3
−1 3
)+…+(1 5
−1 2n−1
)1 2n+1
=1−
1 2n+1
=
.2n 2n+1