微积分求解:∫1/(x(x-3)) dx 如题.

问题描述:

微积分求解:∫1/(x(x-3)) dx
如题.

∫1/(x(x-3)) dx
=∫[1/(x-3)-1/x]/3 dx
=1/3*[∫1/(x-3)d(x-3)-∫(1/x)dx]
=1/3(ln|x-3|-ln|x|)+C

1/(x(x-3)) =[1/(x-3)-1/x]/3
题目=1/3*[∫1/(x-3)d(x-3)-∫(1/x)dx]