已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0

问题描述:

已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0

C^2=a^2+b^2=1+2=3 c^2=3向量MF1点乘向量MF2=0,就是向量MF1点乘向量MF2垂直,M点就是以F1,F2为直径的圆与x^2-y^2/2=1的交点:圆心:(0,0) 半径平方=c^2=3圆为x^2+y^2=3 x^2=3-y^2与x^2-y^2/2=1的交点:3-y^2-y^2/2=...