正三棱柱ABC-A′B′C′中,D为CC′中点,AB=AA′,证明:BD⊥AB′
问题描述:
正三棱柱ABC-A′B′C′中,D为CC′中点,AB=AA′,证明:BD⊥AB′
答
(1)过B和C分别做AA'和DD'的垂线交于E,F 因为∠ABE=∠DCF(两边平行,锐角相等),AB=CD,所以RT△ABE≌RT△DCF 所以AE=DF,又由BB'A'E和CC'D'F是长方形可得BB'=EA',CC'=D'F 从而,AA′+CC′=AE+EA'+CC'=DF+BB′+D'F=BB...