f(x)=1-2sin^2x+2sinx求值域
问题描述:
f(x)=1-2sin^2x+2sinx求值域
答
f(x)=1-2sin²x+2sinx=-2[sinx-(1/2)]²+(3/2).∵-1≤sinx≤1.∴f(x)max=3/2.f(x)min=-3.∴值域为[-3,3/2]
f(x)=1-2sin^2x+2sinx求值域
f(x)=1-2sin²x+2sinx=-2[sinx-(1/2)]²+(3/2).∵-1≤sinx≤1.∴f(x)max=3/2.f(x)min=-3.∴值域为[-3,3/2]