在直角三角形ABC中,∠BAC=90°,AD是高,DE⊥AB,DF⊥AC,垂足分别为E,F.求证AD的立方=BE*CF*BC

问题描述:

在直角三角形ABC中,∠BAC=90°,AD是高,DE⊥AB,DF⊥AC,垂足分别为E,F.求证AD的立方=BE*CF*BC

BE:BD=AD:AC,CF:CD=CA:CB两式相乘可得:(BE*CF):(BD*CD)=AD:BC转化:AD*BD*CD=BC*BE*CF
AD平方=BD*CD代入左边