[sin(x3-1)/(x2-1)]的极限,x趋于1

问题描述:

[sin(x3-1)/(x2-1)]的极限,x趋于1

等于3/2 二分之三
X3-1=(x-1)(X2+X+1)
sin(X3-1)/(X2-1)=[sin(X3-1)/X3-1 ]×﹙X2+X+1﹚/X+1
当x趋于1时X3-1趋于0
所以sin(X3-1)/X3-1=1
原式等于1×3/2=3/2