一艘海轮从A处出发,以每小时40n mile的速度沿东偏南50°方向直线航行,30min后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那

问题描述:

一艘海轮从A处出发,以每小时40n mile的速度沿东偏南50°方向直线航行,30min后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是(  )
A. 10

2
n mile
B. 10
3
n mile
C. 20
2
n mile
D. 20
3
n mile

如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,
从而∠ACB=45°.
在△ABC中,由正弦定理可得BC=

AB
sin45°
×sin30°=10
2

故选:A