已知三角形ABC的三个顶点是圆x^2+y^2-9x=0与抛物线y^2=2px(p>0)的交点,且三角形ABC的垂心与此抛物线的焦点F重合.求出该抛物线方程和焦点F的坐标.
问题描述:
已知三角形ABC的三个顶点是圆x^2+y^2-9x=0与抛物线y^2=2px(p>0)的交点,且三角形ABC的垂心与此抛物线的焦点F重合.求出该抛物线方程和焦点F的坐标.
答
由二个方程解得
x^2-9x+2px=0
x(x-9+2p)=0
x1=0 x2=9-2p
所以三个交点为A (0,0),B(9-2p,根号(2p(9-2p))) ,C(9-2p,-根号(2p(9-2p)))
下一步求出垂心H
AB:y=根号(2p(9-2p)) /(9-2p) *x
过C且垂直AB的直线方程:y+根号(2p(9-2p))=-(9-2p)/根号(2p(9-2p)) (x-9+2p) .(1)
AC:y=-根号(2p(9-2p)) /(9-2p) *x
过B且垂直AC的直线方程:y-根号(2p(9-2p))=(9-2p)/根号(2p(9-2p)) (x-9+2p) .(2)
由(1)(2) 可解得H
根号(2p(9-2p))=-(9-2p)/根号(2p(9-2p)) (x-9+2p)
2p(9-2p)=-(9-2p)(x-9+2p)
(9-2p)(2p+x-9+2p)=0
x=9-4p
又H与F重合 得
p/2 =9-4p
p=2
所以 得y^2=4x ,F(1,0)