一元三次方程求解:3x^3+x^2=28

问题描述:

一元三次方程求解:3x^3+x^2=28

3x^3-6x^2+7x^2-28=0
3x^2(x-2)+7(x+2)(x-2)=0
(x-2)(3x^2+7x+14)=0
只有一个实根:x=2

∵3x^3+x^2=28,∴3x^3-24+x^2-4=0,∴3(x^3-8)+(x^2-4)=0,∴3(x-2)(x^2+2x+4)+(x-2)(x+2)=0,∴(x-2)[3(x^2+2x+4)+(x-2)]=0,∴(x-2)(3x^2+7x+10)=0,∴x-2=0,或3...