过点A(5,-7)的圆X^2+Y^2=5的切线方程为

问题描述:

过点A(5,-7)的圆X^2+Y^2=5的切线方程为

5x-7y≡5

当斜率不存在时,x=5
当斜率存在时,设斜率为k,切线方程是y+7=k(x-5)
圆心到切线的距离为半径,得k=-12/35代入可得
x=5或12x+35y+161=0