在直角三角形ABC中,AD是斜边BC上的高,用向量法证明:AD05=BD*DC
问题描述:
在直角三角形ABC中,AD是斜边BC上的高,用向量法证明:AD05=BD*DC
答
是 |AD|^2=|BD|*|DC|吗?
以下"."表示点乘.
证明:由已知, AB垂直于AC,AD垂直于BC,
所以 AB.AC=0,
AD.DB=0,
AD.DC=0.
又因为 AB=AD+DB,
AC=AD+DC,
所以 0=(AD+DB).(AD+DC)
=AD^2+AD.DC+DB.AD+DB.DC
=AD^2+DB.DC.
所以 AD^2= -DB.DC =BD.DC.
又因为 BD,DC共线,
所以 |AD|^2=|BD|*|DC|.
证法2: 令 AD=a,DB=b,DC=c,(三个都是向量).
则 AB=AD+DB=a+b,
AC=AD+DC=a+c.
因为 a垂直于b,a垂直于c,
所以 a.b=0,a.c=0.
又因为 AB垂直于AC,
所以 0=(a+b).(a+c)
=a^2+a.c+b.a+b.c
=a^2+b.c
所以 a^2= -b.c.
又因为 b,c共线,
所以 |a|^2=|b||c|.
即 |AD|^2=|BD||DC|.