f(x)在[0,1]上具有二阶导数,|f(x)|

问题描述:

f(x)在[0,1]上具有二阶导数,|f(x)|

证明:把f(x)在x=c处泰勒展开得f(0)=f(c)-f'(c)*c+f''(m)*c²/2f(1)=f(c)+f'(c)*(1-c)+f''(n)*(1-c)²/2两式相减,得f(1)-f(0)=f`(c)+f''(n)*(1-c)²/2-f''(m)*c²/2f'(c)=f(1)-f(0)+f''(m)*c²/...