高二 数学 函数 请详细解答,谢谢! (25 9:22:45)已知函数f(x)=3x,f(2+a)=18,g(x)=r×3ax-4x的定义域为【0,1】1)求a的值2)若函数g(x)在【0,1】上是单调递减函数,求实属r的取值范围3)若函数g(x)的最大值为1/2,求实属r的值

问题描述:

高二 数学 函数 请详细解答,谢谢! (25 9:22:45)
已知函数f(x)=3x,f(2+a)=18,g(x)=r×3ax-4x的定义域为【0,1】
1)求a的值
2)若函数g(x)在【0,1】上是单调递减函数,求实属r的取值范围
3)若函数g(x)的最大值为1/2,求实属r的值

1.f(2+a)=3(2+a)=18 a=4
2.g(x)=12rx-4x 【0,1】递减 g(0)>=g(1) 所以r3.g(x)
在[0,1]上g(0)最大

1)因为f(x)=3x,所以f(2+a)=3(2+a)=18 得a=4
2)由(1)得a=4 所以g(x)=12rx-4x=(12r-4)x
因为g(x)在其定义域上单调递减, 则g(0)大于g(1) 即0大于12r-4
可得r小于1/3
3)g(x)=(12r-4)x 定义域为【0,1】
若g(x)是单调递减 则最大值是g(0)=0不为1/2 故舍去此情况
若g(x)单调递增 则12r-4大于0 得r大于1/3
此时 最大值是g(1)=12r-4=1/2 得r=3/8 在r的范围之内
所以 r=3/8
仅供参考 呵呵

(1)
∵ f(x)=3x,f(2+a)=18,
∴ 3(2+a)=18 ,
∴ a=4 .
(2)
∵ a=4 ,函数g(x)=r×3ax-4x ,
∴ g(x)=(12r-4)x ,
∵ 函数g(x)在【0,1】上是单调递减函数,
∴ 12r-4<0 ,
∴ r<1/3 .
(3)
∵ g(x)=r×3ax-4x的定义域为【0,1】,
即g(x)=(12r-4)x的定义域为【0,1】,
函数g(x)的最大值为1/2,
①若函数g(x)在【0,1】上是单调递减函数,
则最大值是g(0)=0 ,舍去 ;
②若函数g(x)在【0,1】上是单调递增函数,
∴ 12r-4>0 ,得 r>1/3 ;
最大值是g(1)=1/2 ,
∴ 12r-4=1/2 ,
∴ r=3/8 ,(在r>1/3的范围之内).

如果我没搞错.
1)f(2+a)=3(2+a)=6+3a=18 a=4
2)g(x)=12rx-4x=(12r-4)x 12r-43)当r 当r>1/3时,同理,当x=1时,g(x)max=12r-4=1/2 r=3/8
当r=1/3时,g(x)=0 舍 所以 综上所述,r=3/8
你自己还是算一下吧