共面向量定理如果两个向量a.b不共线,则向量P与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb,为什么要规定两个向量不共线?

问题描述:

共面向量定理
如果两个向量a.b不共线,则向量P与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb,为什么要规定两个向量不共线?

用大学物理 共线强调2维 共面三维 若共线了 在证共面有什么意义
再说所有共线是共面特例 1等于1 有什么意义

你假设a.b向量共线以后的新向量为c,那么此时P一定会和c共面(因为空间中任意两个向量一定共面),而此定理说的是三个向量共面的问题,如果共线的话,就变成是说两个向量共面的问题了. 希望你能够理解!