3X+2Y-5=0 求X的平方+Y的平方的最小值就是说可以把X的平方+Y的平方看作是一个圆的方程,且其圆心坐标是(0,0),然后再用点到直线的距离求最小值?准确的说我看了之后更加不懂了!是不是35/13?

问题描述:

3X+2Y-5=0 求X的平方+Y的平方的最小值
就是说可以把X的平方+Y的平方看作是一个圆的方程,且其圆心坐标是(0,0),然后再用点到直线的距离求最小值?
准确的说我看了之后更加不懂了!
是不是35/13?

解法一:
已知3x+2y-5=0
即y=(5-3x)/2

x^2+y^2
=x^2+[(5-3x)/2]^2
=(13x^2-30x+25)/4
=(13/4)*(x-15/13)^2+25/13
当x=15/13时,(x^2+y^2)有最小值=25/13
解法二:
设x^2+y^2=s^2,则
x=s*cosa,y=s*sina
3x+2y-5=0
3s*cosa+2s*sina-5=0
3s*cosa=5-2s*sina
9s^2*cos^2a=25-20s*sina+4s^2*sin^2a
9s^2*(1-sin^2a)=25-20s*sina+4s^2*sin^2a
13s^2*sin^2a-20s*sina+25-9s^2=0
上方程未知数sina有实数解的条件是:它的判别式≥0,即
(-20s)^2-4*13s^2*(25-9s^2)≥0
9s^2*(13s^2-25)≥0
9s^2>0
s^2≥25/13
答:(x^2+y^2)的最小值=25/13