三角形 (4 19:59:7)在△ABC中,∠B=45°,AC=√10,cosC=(2√5)/5,若点D是AB的中点,求中线CD的长度?
问题描述:
三角形 (4 19:59:7)
在△ABC中,∠B=45°,AC=√10,cosC=(2√5)/5,若点D是AB的中点,求中线CD的长度?
答
利用正弦公式sin45和sinc,得到AB=2,再利用余弦公式得到BC=3根号2,又因为BD=1,利用余弦公式,cos45,得到cd=根号13.
答
∵cosC=(2√5)/5
∴sinC=√{1-[(2√5)/5] ^2}
=√(1-4/5)
=√1/5
=√5/5
根据正弦定律得知
AC/sinB=AB/sinC
√10/sin45°=AB/(√5/5)
AB=√10/(√2/2)*(√5/5)
=2
∵ D点是AB的中点,所以BD=AD=1/2*AB
∴ BD=AB/2=2/2=1
SinA
=sin(B+C)
= sinBcosC+cosBsinC
=√2/2*(2√5)/5+√2/2*(√5/5)
=√2/2((2√5)/5+(√5/5))
=√2/2(3√5/5)
=2*10/√10
BC/sinA=AB/sinC
BC=AB*sinA/sinC
=2*2*10/√10/(√5/5)
=√2*20
根据余弦定律可知
CD^2=BD^2+BC^2-2BD*BCcosB
=1^2+(√2*20)^2-2*1*√2*20*√2/2
=761
CD=√761