2001×2003×(1/2001×2002+1/2002×2003) (提示:利用乘法分配律)
问题描述:
2001×2003×(1/2001×2002+1/2002×2003) (提示:利用乘法分配律)
答
2001×2003×(1/2001×2002+1/2002×2003)
=2001×2003×1/(2001×2002)+2001×2003×1/(2002×2003)
=2003/2002+2001/2002
=(2003+2001)/2002
=4002/2002
=2
答
看样子是一道小学数学题,最好利用乘法分配律解答. 上式=8*1.24+0.01*1.24+8*1.23+0.02*1.23. =8*(1.24+1.23++1.18)+0.01*1.
答
2001×2003×(1/2001×2002+1/2002×2003)
=2001×2003×1/(2001×2002)+2001×2003×1/(2002×2003)
=2003/2002+2001/2002
=(2003+2001)/2002
=4002/2002
=2