1/(1+2)+1/(1+2+3)+……+1/(1+2+3……+100)怎么算?
问题描述:
1/(1+2)+1/(1+2+3)+……+1/(1+2+3……+100)怎么算?
答
因为
1+2=2*3/2
1+2+3=3*4/2
......
1+2+3+4+......+100=100*101/2
所以
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+......+100)
=2(1/2 -1/3) +2(1/3-1/4)+......+2(1/100-1/101)
=2*(1/2-1/101)
=99/101
答
1+2+3+。。。。。n=n(n+1)/2
倒数就是2/(n+1)n=2[1/n-1/(n+1)]
原式化为2【1/2-1/3+1/3-1/4.........+1/100-1/101】
=2[1/2-1/101]
=99/101
答
1/(1+2)+1/(1+2+3)+……+1/(1+2+3……+100)
=2/2×3+2/3×4+.+2/100×101
=2×(1/2-1/3+1/3-1/4+.+1/100-1/101)
=2×(1/2-1/101)
=1-2/101
=99/101