一动圆与两圆(x+4)2+y2=25和(x-4)2+y2=4都外切,则动圆圆心M的轨迹方程是_.
问题描述:
一动圆与两圆(x+4)2+y2=25和(x-4)2+y2=4都外切,则动圆圆心M的轨迹方程是______.
答
设动圆的半径为r,
由圆(x+4)2+y2=25,得到圆心为O(-4,0),半径为5;
圆(x-4)2+y2=4的圆心为F(4,0),半径为2.
依题意得|MO|=5+r,|MF|=2+r,
则|MO|-|MF|=(5+r)-(2+r)=3<|OF|,
所以点M的轨迹是双曲线的右支.
∴a=
,c=4,3 2
∴b2=c2-a2=
,55 4
则动圆圆心M的轨迹方程是
-4x2
9
=1(x>0).4y2
55
故答案为:
-4x2
9
=1(x>0)4y2
55