a,b,c都大于0,且a+b+c=1,求1/(a+b)+1/(b+c)+1/(a+c)的最小值
问题描述:
a,b,c都大于0,且a+b+c=1,求1/(a+b)+1/(b+c)+1/(a+c)的最小值
答
a>0、b>0、c>0,且a+b+c=1
∴1/(a+b)+1/(b+c)+1/(c+a)
=1²/(a+b)+1²/(b+c)+1²/(c+a)
≥(1+1+1)²/[(a+b)+(b+c)+(c+a)]
=9/[2(a+b+c)]
=9/2.
故所求最小值为:9/2.