已知:a.b是正实数,n是正整数,n不等于1,求证 a^n+b^n>=a^(n-1) b+a b^(n-1)

问题描述:

已知:a.b是正实数,n是正整数,n不等于1,求证 a^n+b^n>=a^(n-1) b+a b^(n-1)

左边-右边=(a-b)(a^(n-1)-b^(n-1))
当a=b时,显然=0.
当a≠b时,(a-b)与(a^(n-1)-b^(n-1))总是同号,所以为正.