x+y-z/z=x-y+z/y=y+z-x/x,且xyz≠0,求代数式(x+y)(y+z)(x+z)/xyz
问题描述:
x+y-z/z=x-y+z/y=y+z-x/x,且xyz≠0,求代数式(x+y)(y+z)(x+z)/xyz
答
设x+y-z/z=x-y+z/y=y+z-x/x=k 有x+y-z=kz x-y+z=ky y+z-x=kx 三式相加得x+y+z=k(x+y+z) k=1 得x+y=(k+1)z x+z=(k+1)y y+z=(k+1)x (x+y)(y+z)(x+z)/xyz=(k+1)^3xyz/xyz=(k+1)^3=8