如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2√3,求:(1)AC与平面ABD所
问题描述:
如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2√3,求:(1)AC与平面ABD所
成角的正弦值;(2)AM与平面ACD所成角的正弦值
答
(1)△BCD是边长为2的正三角形面积=2√3/2=√3,三棱锥A-BCD的体积=2√3*√3/3=2,△ABD的面积=2*2√3/2=2√3,三棱锥C-ABD的高=2*3/2√3=√3,AC=√(4+12)=4,AC与平面ABD所角的正弦值=√3/4;
(2)∵AC=AD,∴△ACD为等腰△,△MCD是边长为2的正三角形,则由A、M点分别作垂线垂直平分CD边于E,∵平面MCD⊥平面BCD,AB⊥平面BCD,∴AB∥ME,连接BE,BE⊥CD,四边形ABEM为直角梯形,AM=√(3+3)=2√3,三棱锥A-MCD的体积=√3*√3/3=1,△ACD的高=√(16-1)=√15,△ACD的面积=2*√15/2=√15,三棱锥M-ACD的高=1*3/√15=3/√15,AM与平面ACD所成角的正弦值=3/(√15*2√3)=√5/10.