有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是60°,又侧棱与底面所成的角都是45°,则这个棱锥的体积是(  ) A.1 B.3 C.34 D.32

问题描述:

有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是60°,又侧棱与底面所成的角都是45°,则这个棱锥的体积是(  )
A. 1
B.

3

C.
3
4

D.
3
2

如图,在等腰梯形ABCD中,AD=AB=DC=1,∠ABC=60°,过A作AH⊥BC于H,
则BH=BA•cos60°=

1
2
.AH=
3
2

根据等腰梯形的性质,下底BC=AD+2BH=2.设O为BC中点,则BO=OC=1,△ABO为正三角形,∠BAO=60°,△AOC为等腰三角形,∠OAC=30°,
∴∠BAC=90°.
因为侧棱与底面所成的角都是45°,所以顶点P在底面的射影到ABCD各顶点的距离相等,即为等腰梯形ABCD 的外接圆的圆心,也为RT△BAC外心,即为点O,
∴PO为四棱锥的高.PO=OC=1.
又S梯形ABCD=
1
2
(AD+BC)×AH=
1
2
×3 ×
3
2
=
3
3
4

∴锥体体积V=
1
3
S梯形ABCD×PO=
3
4

故选C.