已知α,β均为锐角,tanα=1/2,tanβ=1/3,则α+β=_.

问题描述:

已知α,β均为锐角,tanα=

1
2
,tanβ=
1
3
,则α+β=______.

∵tanα=

1
2
,tanβ=
1
3

∴tan(α+β)=
tanα+tanβ
1−tanαtanβ
=
1
2
+
1
3
1−
1
2
×
1
3
=1,
∵α,β均为锐角,即α,β∈(0,
π
2
),
∴0<α+β<π,
则α+β=
π
4

故答案为:
π
4