帮忙解一个牛吃草问题的方程
问题描述:
帮忙解一个牛吃草问题的方程
有一片牧场,草每天都均匀地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问如果放牧16头牛,几天可以吃完牧草?
⑴若放牧16头牛,几天可以吃完牧草?
设每头牛每天吃草量为1,草每天长x
⑵要使牧草永远吃不完,至多放几头牛?
答
设每头牛每天吃草量为1,草每天长x,草原原来有草Y
Y+(6-1)x=24×6
Y+(8-1)x=21×8
解得:x=12 ,Y=84
设若放牧16头牛,a天可以吃完牧草,
84+12(a-1)=16a 解得a=18
最多放牛12头,草永远吃不完~ 因为草的增长量为12,一头牛一天吃草1~
过程上面就是过程啊!!我说的是⑵的过程,OK?(1)已经设了草每天长x, x=12;草每天增长12,而一头牛每天吃1;如果牛数量多于12,那草终有一天会被吃完~~(1)懂了, 第二步就很明显了~~