等比数列,a1+a2+...+an=2^n-1,求a1^2+a2^2+.+an^2

问题描述:

等比数列,a1+a2+...+an=2^n-1,求a1^2+a2^2+.+an^2

Sn=a1+a2+...+an=2^n-1
Sn-1=a1+a2+...+an-1=2^(n-1)-1
Sn-Sn-1=an=2^n-2^(n-1)=2^(n-1)
令an^2 =bn=2^(2n-2),
b(n-1)=a(n-1)^2=2^(2n-4),
显然bn=4b(n-1),
b1=a1^2=1,
Sbn=1(1-4^n)/(1-4)
=(4^n-1)/3