求和:(x+1/y)+[x^2+1/(y^2)]...+[x^n+1/(y^n)](x,y不等于1)
问题描述:
求和:(x+1/y)+[x^2+1/(y^2)]...+[x^n+1/(y^n)](x,y不等于1)
我知道公式的但是不晓得这么化简、要详略步骤
答
(x+1/y)+[x^2+1/(y^2)]+...+[x^n+1/(y^n)]=(x+x^2+…+x^n)+(1/y+1/y^2+…1/y^n)=x(x^n-1)/(x-1)+(1/y)(1-1/y^n)/(1-1/y)=x(x^n-1)/(x-1)+(1/y)[(y^n-1)/y^n]/[(y-1)/y]=x(x^n-1)/(x-1)+(1/y)[(y^n-1)/y^n]*[y/(y-1)]...