求解微分方程:y’²+2xy‘-x²-4y=0
问题描述:
求解微分方程:y’²+2xy‘-x²-4y=0
y’²+2xy’-x²-4y=0
答
y'^2+2xy'+x^2= 2x^2+4y
(y'+x)^2=2(x^2+2y)
y'+x = sqrt(2x^2+4y) .y'+x = -sqrt(2x^2+4y) 就自己处理吧.
(y'+x)/sqrt(2x^2+4y) = 1
(sqrt(2x^2+4y))'= 2
sqrt(2x^2+4y) = 2x+2C
=> y = 1/2*x^2+2Cx+C^2