求极限 lim(x→2)(X—1)^3—1/tan(X—2)

问题描述:

求极限 lim(x→2)(X—1)^3—1/tan(X—2)

lim(x→2)[(x-1)^3-1]/tan(x-2)=lim(x→2) (x-2)[(x-1)^2 + (x-1)+1]/[sin(x-2)/cos(x-2)]=lim(x→2)[(x-1)^2 + (x-1)+1]*cos(x-2)*(x-2)/sin(x-2)= [1+1+1]*1*1= 3或者对tan(x-2)直接用等价无穷小量(x-2)替换...