log2(2^x-1)log2(2^(x+2)-4=3log2(2^x-1)log2(2^(x+2)-4)=3
问题描述:
log2(2^x-1)log2(2^(x+2)-4=3
log2(2^x-1)log2(2^(x+2)-4)=3
答
log2(2^x-1)log2(2^(x+2)-4=3
令log2(2^(x-1))=y 则log2(2^(x+2))=log2(2^(x-1+3))=log2(2^(x-1))+log2(8)=y+3
原方程化为
y(y+3)-4=3
y²+3y-7=0
(y+3/2)²=37/4
y=-3/2+√37/2 y=-3/2-√37/2
那么
log2(2^(x-1))=-3/2+√37/2
2^(-3/2+√37/2)=2^(x-1)
x-1=-3/2+√37/2
x=-1/2+√37/2
同样,另一个解是 x=-1/2-√37/2
答
麻烦你把你方程的括号补齐。
答
设t=log2(2^x-1)则log2(2^(x+2)-4)=2+t原式=t*(2+t)=3t=-3ort=1log2(2^x-1)=-32^x-1=1/82^x=9/8x=2log2(3)-3log2(2^x-1)=12^x-1=22^x=3x=log2(3)综上x=2log2(3)-3 or x=log2(3)