(1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.(1/98×99×100)等于多少啊?(1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.(1/98×99×100)等于多少啊?
(1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.(1/98×99×100)等于多少啊?
(1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.(1/98×99×100)
等于多少啊?
6529 这就是最佳答案 马上采用吧
不信你算算
6+6+20/3+.....=0
我替370116解释答案,我看懂了,第一步(关键步):每个括号里的三个因数看后两个,把这两个因数分别化成他们的倒数,然后相乘,答案自然是倒的,再乘1/2;然后的计算肯定是他故意写那么花!不,或许是习惯。我来解释:中括号里的:1/2-{1/3+1/(2×3)}-{1/(3×4)+1/(3×4)}注意这两个大括号里的可以化为零!后边也是。最后自己看吧。我先闪啦!
很简单,没有那么复杂。
(1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.......(1/98×99×100)
=1/2[1/1*2-1/2*3]+1/2[1/2*3-1/3*4]+1/2[1/3*4-1/4*5]+。。。+1/2[1/98*99-1/99*100]
=1/2[1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5+。。。+1/98*99-1/99*100]
=1/2[1/1*2-1/99*100]
=1/2*4949/9900
=4949/19800
(1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.......(1/98×99×100)
原式=1/2*[2/(1*2*3)+2/(2*3*4)+...+2/(98*99*100)]
=1/2*[(3-1)/(1*2*3)+(4-2)/(2*3*4)+...+(100-98)/(98*99*100)]
=1/2*[3/(1*2*3)-1/(1*2*3)+4/(2*3*4)-2/(2*3*4)+...+100/(98*99*100)-98/(98*99*100)]
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/(98*99)-1/(99*100)]
=1/2*[1/2-1/9900]
=4949/19800
本人才11岁呀!作得不好表打我!
=4949/19800
1/1×2×3)+(1/2×3×4)+(1/3×4×5)+.......(1/98×99×100)
=1/2[1/1*2-1/2*3]+1/2[1/2*3-1/3*4]+1/2[1/3*4-1/4*5]+。。。+1/2[1/98*99-1/99*100]
=1/2[1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5+。。。+1/98*99-1/99*100]
=1/2[1/1*2-1/99*100]
=1/2*4949/9900
=4949/19800
原式=1/2*[2/(1*2*3)+2/(2*3*4)+...+2/(98*99*100)] =1/2*[(3-1)/(1*2*3)+(4-2)/(2*3*4)+...+(100-98)/(98*99*100)] =1/2*[3/(1*2*3)-1/(1*2*3)+4/(2*3*4)-2/(2*3*4)+...+100/(98*99*100)-98/(98*99...
=4949/19800 呗@#%%^*&^$!!