已知椭圆x^2/a^2+y^2/b^2=1的弦PQ和长轴A1A2垂直,求A1P和A2Q的交点M的轨迹方程?,
问题描述:
已知椭圆x^2/a^2+y^2/b^2=1的弦PQ和长轴A1A2垂直,求A1P和A2Q的交点M的轨迹方程?,
答
设A1=(-a,0),A2=(a,0),P=(a cos(s),-b sin(s)),Q=(a cos(s),b sin(s))列出A1P,A2Q这两条直线的方程,联立,可以求出M(x,y)为:(x,y)=(a/cos(s),-b tan(s))x^2/a^2-y^2/b^2=1显然,M点轨迹为双曲线....