已知函数f(x)=4x-2x+1+3. (1)当f(x)=11时,求x的值; (2)当x∈[-2,1]时,求f(x)的最大值和最小值.

问题描述:

已知函数f(x)=4x-2x+1+3.
(1)当f(x)=11时,求x的值;
(2)当x∈[-2,1]时,求f(x)的最大值和最小值.

(1)当f(x)=11,即4x-2x+1+3=11时,(2x2-2•2x-8=0
∴(2x-4)(2x+2)=0
∵2x>02x+2>2,
∴2x-4=0,2x=4,故x=2----------------(4分)
(2)f(x)=(2x2-2•2x+3    (-2≤x≤1)
令∴f(x)=(2x-1)2+2
当2x=1,即x=0时,函数的最小值fmin(x)=2--------------(10分)
当2x=2,即x=1时,函数的最大值fmax(x)=3--------------(12分)