设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.
问题描述:
设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.
A) Xi的分布律为P{Xi=k}=1/(ek!) (k=0,1,2,…)
B) Xi的分布律为P{Xi=k}=1/[k(k+1)] (k=1,2,…)
C) Xi的概率密度为f(x)=1/[π(1+x^2)] (-∞
答
选A要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)当然,D(Xi)存在蕴含了E(Xi)存在简单一点的方法就是排除对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞}1/(k+1)而级数∑{k=1,∞}1/(k+1)发散,故E(Xi)不存...