设函数f(x)具有二阶导数,并满足f(x)=-f(-x),且f(x)=f(x+1).若f′(1)>0,则(  )A. f″(-5)≤f′(-5)≤f(-5)B. f(5)=f″(-5)<f′(-5)C. f′(-5)≤f(-5)≤f″(-5)D. f(-5)<f′(-5)=f″(-5)

问题描述:

设函数f(x)具有二阶导数,并满足f(x)=-f(-x),且f(x)=f(x+1).若f′(1)>0,则(  )
A. f″(-5)≤f′(-5)≤f(-5)
B. f(5)=f″(-5)<f′(-5)
C. f′(-5)≤f(-5)≤f″(-5)
D. f(-5)<f′(-5)=f″(-5)

由f(x)=f(x+1)知,
f(x)是周期为1的周期函数,而可导的周期函数的导函数仍为周期函数,
因而f'(x),f''(x)均是周期为1的周期函数.
又f(x)为奇函数,
故   0=f(0)=f(-1)=f(-2)=…=f(-5),
f'(1)=f'(0)=f'(-1)=f'(-2)=…=f'(-5)>0,
且    f''(0)=f''(-1)=f''(-2)=…=f''(-5).
又因 f'(x)为偶函数,f''(x)为奇函数,
故f''(0)=0,因此f''(5)=0,
于是有   f(5)=f''(-5)<f'(-5).
故选:(B).
答案解析:根据已知条件可以一步一步推出所要用的结论,仔细分析题目所给出的条件即可.
考试点:隐函数导数法则.
知识点:本题主要考查隐函数的导数法则,本题属于基础题.