若sinα=根号10/10,0<α<π/2,β=arccos(-根号5/5),求α+β的值

问题描述:

若sinα=根号10/10,0<α<π/2,β=arccos(-根号5/5),求α+β的值

∵sinα=√10/10,0<α<π/2
∴cosα=√[1-(sinα)^2]=3√10/10
∵β=arccos(-√5/5)
∴cosβ=-√5/5,且π/2<β<π
∴sinβ=√[1-(cosα)^2]=2√5/5
∴sin(α+β)=sinαcosβ+cosαsinβ
=√10/10×(-√5/5)+3√10/10×(2√5/5)
=√2/2
而π/2<α+β<3π/2
∴α+β=3π/4∴sinβ=√[1-(cosα)^2]=2√5/5是cosβ吧?是的,写错了正弦函数的范围不是【0,π】吗为什么是π/2<α+β<3π/2?因为0<α<π/2,π/2<β<π 所以π/2<α+β<3π/2