设f(x,y)在(x0,y0)处的两个一阶偏导数存在,为什么x->x0时的limf(x,y0)=f(x0,y0)

问题描述:

设f(x,y)在(x0,y0)处的两个一阶偏导数存在,为什么x->x0时的limf(x,y0)=f(x0,y0)
有证明过程最好,或者说明一下用到了什么定理之类的.谢了

y=y0 不变,则 f(x,y0)是一元函数,一元函数导数存在必连续,
limf(x,y0)=f(x0,y0).