数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.

问题描述:

数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.

bn=a^[(an)-1]=a^(n-1) (等比数列)
Tn=a(1-a^n)/(1-a)
an=n,am=m,ak=k.且m+k=2n (等差中项)
Tam+Tak=a(2-a^m-a^k)/(1-a)
2Tan=a(2-2a^n)/(1-a)
比较Tam+Tak与2Tan的大小,就是比较2-a^m-a^k与2-2a^n的大小
即比较2a^n与a^m+a^k的大小。
根据均值不等式,a^m+a^k≥2根号(a^m*a^k)=2a^((m+k)/2)=2a^n
所以Tam+Tak≥2Tan

因为an=n所以bn=a^(n-1)(可以理解为首项为1,a为公比的等比数列)因为am+ak=2an所以m+k=2nTam+Tak-2Tan=(2a^n-(a^m+a^k))/(1-a)(这一步你自己算吧!这样写太麻烦)a^m+a^k大于等于2根号(a^(m+k))m+k=2n...