已知数列An,A1=1,An=kA(n-1)+k-2,若k=3,令bn=An+1/2,求数列bn的前n项和Sn 谢谢o(∩_∩)o 哈

问题描述:

已知数列An,A1=1,An=kA(n-1)+k-2,若k=3,令bn=An+1/2,求数列bn的前n项和Sn 谢谢o(∩_∩)o 哈

k=3,则
An=3A(n-1)+1
bn=An+1/2=3A(n-1)+3/2=3*[A(n-1)+1/2]
b(n+1)=A(n+1)+1/2=3An+3/2=3[3A(n-1)+3/2]=3*3[A(n-1)+1/2]
b(n+1)/bn=3
所以数列{bn}是等比数列,公比为3,b1=1+1/2=3/2
Sn=b1(1-q^n)/(1-q)=3/2*(1-3^n)/(1-3)=[3^(n+1)-3]/4

这题简单
k=3,则An=3A(n-1)+3-2=3A(n-1)+1,
将此式子变形为
An+1/2=3A(n-1)+3/2

An+1/2=3(A(n-1)+1/2)

(An+1/2)/ (A(n-1)+1/2)=3
所以{An+1/2}是以A1+1/2=3/2为首项,3为公比的等比数列,
bn=An+1/2,所以{bn}是以b1=3/2为首项,3为公比的等比数列.
所以Sn=b1(1-q^n)/(1-q)
=(3/2)(1-(3^n))/(1-3)
=(3/4)(3^n-1)
=3^(n+1)/4-3/4
即数列bn的前n项和Sn=3^(n+1)/4-3/4.