四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形
问题描述:
四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是( )
A. 平行四边形
B. 矩形
C. 菱形
D. 正方形
答
整理配方式子a2+b2+c2+d2=ab+bc+cd+ad,
2(a2+b2+c2+d2)=2(ab+bc+cd+ad),
∴(a-b)2+(b-c)2+(c-d)2+(a-d)2=0,
由非负数的性质可知:(a-b)=0,(b-c)=0,(c-d)=0,(a-d)=0,
∴a=b=c=d,
∴四边形一定是菱形,
故选C.