已知1−3a+|8b-3|=0,求3ab的值.
问题描述:
已知
+|8b-3|=0,求
1−3a
的值.
3
ab
答
≥0,|8b-3|≥0,
1−3a
又
+|8b-3|=0,
1−3a
∴
=0,|8b-3|=0,
1−3a
∴a=
,b=1 3
,3 8
故
=
3
ab
=
3
×1 3
3 8
.1 2
答案解析:根据题意知:
≥0,|8b-3|≥0,又
1−3a
+|8b-3|=0,所以
1−3a
=0,|8b-3|=0,即可求出a,b的值,继而代入即可得出答案.
1−3a
考试点:立方根;非负数的性质:绝对值;非负数的性质:算术平方根.
知识点:本题考查了立方根,非负数的性质的知识,属于基础题,难度不大,注意根据非负数的性质求出a,b的值是关键.