已知等差数列{an}满足:a1=3,a4+a8=26,{an}的前n项和为Sn,求an及Sn,在线等啊,
问题描述:
已知等差数列{an}满足:a1=3,a4+a8=26,{an}的前n项和为Sn,
求an及Sn,在线等啊,
答
a4=a1+3d,a8=a1+7d,a4+a8=2a1+10d=26,所以d=2,an=a1+(n-1)d=2n+1.
sn=(a1+an)*n/2=(3+2n+1)*n/2=n2(n的平方)+2n
答
因为 An=A1+(n-1)d A1=3,
所以A4+A8=[3+(4-1)d]+[3+(8-1)d]=(3+3d)+(3+7d)=26,即解得d=2
所以:An=3+3(n-1)=2n+1
Sn=3n+2n(n-1)/2=n^2+2n