设等比数列{an}满足:a1=1/3,a2+a3=4/27,且an>0. (Ⅰ)求数列{an}的通项; (Ⅱ)设bn=n/an,求数列{bn}的前n项和Sn.
问题描述:
设等比数列{an}满足:a1=
,a2+a3=1 3
,且an>0.4 27
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn. n an
答
(Ⅰ)∵等比数列{an}满足:a1=
,a2+a3=1 3
,且an>0.4 27
∴
q+1 3
q2=1 3
,且q>0,4 27
解得q=
,1 3
∴an=
×(1 3
)n−1=(1 3
)n.1 3
(Ⅱ)∵bn=
=n•3n,n an
∴Sn=1×3+2×32+3×33+…+n×3n,①
3Sn=1×32+2×33+3×34+…+n×3n+1,②
①-②,得:-2Sn=3+32+33+…+3n-n•3n+1
=
-n•3n+1,3×(1−3n) 1−3
∴Sn=
+(3 4
−n 2
)•3n+1.1 4