设等比数列{an}满足:a1=1/3,a2+a3=4/27,且an>0. (Ⅰ)求数列{an}的通项; (Ⅱ)设bn=n/an,求数列{bn}的前n项和Sn.

问题描述:

设等比数列{an}满足:a1=

1
3
,a2+a3=
4
27
,且an>0.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=
n
an
,求数列{bn}的前n项和Sn

(Ⅰ)∵等比数列{an}满足:a1=

1
3
,a2+a3=
4
27
,且an>0.
1
3
q+
1
3
q2
4
27
,且q>0,
解得q=
1
3

∴an=
1
3
×(
1
3
)n−1
=(
1
3
n
(Ⅱ)∵bn=
n
an
=n•3n
∴Sn=1×3+2×32+3×33+…+n×3n,①
3Sn=1×32+2×33+3×34+…+n×3n+1,②
①-②,得:-2Sn=3+32+33+…+3n-n•3n+1
=
3×(1−3n)
1−3
-n•3n+1
∴Sn=
3
4
+(
n
2
1
4
)•3n+1