如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证: (1)BQ=CQ; (2)BQ+AQ=AB+BP.

问题描述:

如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证:

(1)BQ=CQ;   
(2)BQ+AQ=AB+BP.

证明:(1)∵BQ是∠ABC的角平分线,∴∠QBC=12∠ABC.∵∠ABC+∠ACB+∠BAC=180°,且∠BAC=60°,∠ACB=40°,∴∠ABC=80°,∴∠QBC=12×80°=40°,∴∠QBC=∠C,∴BQ=CQ;(2)延长AB至M,使得BM=BP,连结MP.∴...