先化简,在求值:〔(x-3)/(x-2)〕 ÷ 〔x+2 - ( 5/x-2)〕,其中x=-1

问题描述:

先化简,在求值:〔(x-3)/(x-2)〕 ÷ 〔x+2 - ( 5/x-2)〕,其中x=-1

[(x-3)/(x-2)]/[x+2-(5/x-2)]
=[(x-3)/(x-2)]/{(x+2)(x-2)/x-2]-(5/x-2)}
=[(x-3)/(x-2)]/[(x+3)(x-3)/x-2]
=1/(x+3)
代x=-1,得1/(-1+3)=1/2

原式=〔(x-3)/(x-2)〕 ÷ 〔(x+2)(x-2) - 5〕
=〔(x-3)/(x-2)〕 ÷ 〔(x² - 9〕/(x-2) 〕
=〔(x-3)/(x-2)〕*(x-2)/〔(x+3) (x-3)〕
=1/(x+3)
当x=-1时,原式=1/2