已知f’(x)∫_0^2▒〖f(x)〗=8,且发f(0)=0,则∫_0^2▒〖f(x)dx〗=

问题描述:

已知f’(x)∫_0^2▒〖f(x)〗=8,且发f(0)=0,则∫_0^2▒〖f(x)dx〗=

f’(x)∫_0^2▒〖f(x)〗=8
f(x) ∫_0^2▒〖f(x)〗=8x+C
f(0)∫_0^2▒〖f(x)〗 = C
C=0

f(x) ∫_0^2▒〖f(x)〗=8x
∫_0^2▒〖f(x)〗=8x/f(x)答案,A.2 B. +-2 C.4D.+-4,我的错,是选择题∫_0^2▒〖f(x)〗能否用我可以看得懂的再写一遍�Ǵ�0��2��f(x)�Ļ��f’(x)∫(0->2)f(x)dx=8=> f'(x) = kf(x) = kx+ Cf(0) =0C=0f(x) = kxf’(x)∫(0->2)f(x)dx=8k∫(0->2)kxdx=8k^2 [x^2/2](0->2) =8k^2=4k= 2 or -2∫(0->2)f(x)dx = 4 or -4Ans : D