已知sin a+sin b=1/2,cos a+cos b=(根号3)/2,求证:sin(a+TT/3)=1/2
问题描述:
已知sin a+sin b=1/2,cos a+cos b=(根号3)/2,求证:sin(a+TT/3)=1/2
答
上面两式两边分别平方,整理得
sina*sinb+cosa*cosb=-1/2
sin(a+TT/3)=1/2*sina+(根号3)/2*cosa
=(sin a+sin b)*sina+(cos a+cos b)*cosa
=1+sina*sinb+cosa*cosb
=1+(-1/2)
=1/2